Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23602, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581236

RESUMO

Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.


Assuntos
Células Endoteliais , Ovário , Feminino , Animais , Ovário/metabolismo , Células Endoteliais/metabolismo , Neurotensina/metabolismo , Junções Aderentes/metabolismo , Permeabilidade Capilar , Caderinas/genética , Caderinas/metabolismo , Macaca/metabolismo , Permeabilidade , Endotélio Vascular/metabolismo , Mamíferos/metabolismo
2.
Biol Reprod ; 108(2): 258-268, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36214501

RESUMO

Angiogenesis within the ovarian follicle is an important component of ovulation. New capillary growth is initiated by the ovulatory surge of luteinizing hormone (LH), and angiogenesis is well underway at the time of follicle rupture. LH-stimulated follicular production of vascular growth factors has been shown to promote new capillary formation in the ovulatory follicle. The possibility that LH acts directly on ovarian endothelial cells to promote ovulatory angiogenesis has not been addressed. For these studies, ovaries containing ovulatory follicles were obtained from cynomolgus macaques and used for histological examination of ovarian vascular endothelial cells, and monkey ovarian microvascular endothelial cells (mOMECs) were enriched from ovulatory follicles for in vitro studies. mOMECs expressed LHCGR mRNA and protein, and immunostaining confirmed LHCGR protein in endothelial cells of ovulatory follicles in vivo. Human chorionic gonadotropin (hCG), a ligand for LHCGR, increased mOMEC proliferation, migration and capillary-like sprout formation in vitro. Treatment of mOMECs with hCG increased cAMP, a common intracellular signal generated by LHCGR activation. The cAMP analog dibutyryl cAMP increased mOMEC proliferation in the absence of hCG. Both the protein kinase A (PKA) inhibitor H89 and the phospholipase C (PLC) inhibitor U73122 blocked hCG-stimulated mOMEC proliferation, suggesting that multiple G-proteins may mediate LHCGR action. Human ovarian microvascular endothelial cells (hOMECs) enriched from ovarian aspirates obtained from healthy oocyte donors also expressed LHCGR. hOMECs also migrated and proliferated in response to hCG. Overall, these findings indicate that the LH surge may directly activate ovarian endothelial cells to stimulate angiogenesis of the ovulatory follicle.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Ovário , Receptores do LH , Animais , Feminino , Humanos , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/metabolismo , Células Endoteliais/metabolismo , Hormônio Luteinizante/farmacologia , Hormônio Luteinizante/metabolismo , Macaca fascicularis , Neovascularização Fisiológica/fisiologia , Folículo Ovariano/metabolismo , Ovário/irrigação sanguínea , Ovário/metabolismo , Ovulação/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo
3.
Respir Res ; 23(1): 326, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463179

RESUMO

BACKGROUND: Bacterial pneumonia is a major risk factor for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Pseudomonas aeruginosa (PA), an opportunistic pathogen with an increasing resistance acquired against multiple drugs, is one of the main causative agents of ALI and ARDS in diverse clinical settings. Given the anti-inflammatory role of the cannabinoid-2 receptor (CB2R), the effect of CB2R activation in the regulation of PA-induced ALI and inflammation was tested in a mouse model as an alternative to conventional antibiotic therapy. METHODS: In order to activate CB2R, a selective synthetic agonist, JWH133, was administered intraperitoneally (i.p.) to C57BL/6J mice. Furthermore, SR144528 (a selective CB2R antagonist) was administered in combination with JWH133 to test the specificity of the CB2R-mediated effect. PA was administered intratracheally (i.t.) for induction of pneumonia in mice. At 24 h after PA exposure, lung mechanics were measured using the FlexiVent system. The total cell number, protein content, and neutrophil population in the bronchoalveolar lavage fluid (BALF) were determined. The bacterial load in the whole lung was also measured. Lung injury was evaluated by histological examination and PA-induced inflammation was assessed by measuring the levels of BALF cytokines and chemokines. Neutrophil activation (examined by immunofluorescence and immunoblot) and PA-induced inflammatory signaling (analyzed by immunoblot) were also studied. RESULTS: CB2R activation by JWH133 was found to significantly reduce PA-induced ALI and the bacterial burden. CB2R activation also suppressed the PA-induced increase in immune cell infiltration, neutrophil population, and inflammatory cytokines. These effects were abrogated by a CB2R antagonist, SR144528, further confirming the specificity of the CB2R-mediated effects. CB2R-knock out (CB2RKO) mice had a significantly higher level of PA-induced inflammation as compared to that in WT mice. CB2R activation diminished the excess activation of neutrophils, whereas mice lacking CB2R had elevated neutrophil activation. Pharmacological activation of CB2R significantly reduced the PA-induced NF-κB and NLRP3 inflammasome activation, whereas CB2KO mice had elevated NLRP3 inflammasome. CONCLUSION: Our findings indicate that CB2R activation ameliorates PA-induced lung injury and inflammation, thus paving the path for new therapeutic avenues against PA pneumonia.


Assuntos
Lesão Pulmonar Aguda , Canabinoides , Inflamação , Infecções por Pseudomonas , Receptor CB2 de Canabinoide , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/prevenção & controle , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Citocinas , Inflamassomos/genética , Inflamassomos/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/prevenção & controle , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pseudomonas aeruginosa , Receptores de Canabinoides , Síndrome do Desconforto Respiratório , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/imunologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Modelos Animais de Doenças
4.
Respir Res ; 21(1): 132, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471489

RESUMO

BACKGROUND: Chronic tissue injury was shown to induce progressive scarring in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF), while an array of repair/regeneration and stress responses come to equilibrium to determine the outcome of injury at the organ level. In the lung, type I alveolar epithelial (ATI) cells constitute the epithelial barrier, while type II alveolar epithelial (ATII) cells play a pivotal role in regenerating the injured distal lungs. It had been demonstrated that eukaryotic cells possess repair machinery that can quickly patch the damaged plasma membrane after injury, and our previous studies discovered the membrane-mending role of Tripartite motif containing 72 (TRIM72) that expresses in a limited number of tissues including the lung. Nevertheless, the role of alveolar epithelial cell (AEC) repair in the pathogenesis of IPF has not been examined yet. METHOD: In this study, we tested the specific roles of TRIM72 in the repair of ATII cells and the development of lung fibrosis. The role of membrane repair was accessed by saponin assay on isolated primary ATII cells and rat ATII cell line. The anti-fibrotic potential of TRIM72 was tested with bleomycin-treated transgenic mice. RESULTS: We showed that TRIM72 was upregulated following various injuries and in human IPF lungs. However, TRIM72 expression in ATII cells of the IPF lungs had aberrant subcellular localization. In vitro studies showed that TRIM72 repairs membrane injury of immortalized and primary ATIIs, leading to inhibition of stress-induced p53 activation and reduction in cell apoptosis. In vivo studies demonstrated that TRIM72 protects the integrity of the alveolar epithelial layer and reduces lung fibrosis. CONCLUSION: Our results suggest that TRIM72 protects injured lungs and ameliorates fibrosis through promoting post-injury repair of AECs.


Assuntos
Células Epiteliais Alveolares/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/prevenção & controle , Pulmão/metabolismo , Proteínas com Motivo Tripartido/biossíntese , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Bleomicina/toxicidade , Feminino , Células HEK293 , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas Recombinantes/biossíntese
5.
BMJ ; 366: l5060, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399424
6.
J Vis Exp ; (145)2019 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-30882784

RESUMO

Alveolar macrophages (AMs) guard the alveolar space of the lung. Phagocytosis by AMs plays a critical role in the defense against invading pathogens, the removal of dead cells or foreign particles, and in the resolution of inflammatory responses and tissue remodeling, processes that are mediated by various surface receptors of the AMs. Here, we report methods for the analysis of the phagocytic function of AMs using in vitro and in vivo assays and experimental strategies to differentiate between the pattern recognition receptor-, complement receptor-, and Fc gamma receptor-mediated phagocytosis. Finally, we discuss a method to establish and characterize a P. aeruginosa pneumonia model in mice to assess bacterial clearance in vivo. These assays represent the most common methods to evaluate AM functions and can also be used to study macrophage function and bacterial clearance in other organs.


Assuntos
Macrófagos Alveolares/citologia , Fagocitose , Pseudomonas aeruginosa/fisiologia , Animais , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/metabolismo , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia , Receptores de Complemento/metabolismo , Receptores de IgG/metabolismo
7.
World J Surg Oncol ; 6: 125, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19032771

RESUMO

BACKGROUND: Transarterial Chemoembolization (TACE) has been recognized as a successful way of managing symptomatic and/or progressive hepatic carcinoid metastases not amenable to surgical resection. Although it is a fairly safe procedure, it is not without its complications. CASE PRESENTATION: This is a case of a 53 year-old woman with a patent foramen ovale (PFO) and mild pulmonary hypertension who underwent TACE for progressive carcinoid liver metastases. She developed acute heart failure, due to a severe inflammatory response; this resulted in pneumatosis intestinalis due to non-occlusive mesenteric ischemia. We describe the successful non-operative management of her pneumatosis intestinalis and the role of a PFO in this patient's heart failure. CONCLUSION: TACE remains an effective and safe treatment for metastatic carcinoid not amenable to resection, this case illustrates the complexity of complications that can arise. A multi-disciplinary approach including ready access to advanced critical care facilities is recommended in managing such complex patients.


Assuntos
Tumor Carcinoide/terapia , Quimioembolização Terapêutica/métodos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Quimioembolização Terapêutica/efeitos adversos , Feminino , Forame Oval Patente/complicações , Humanos , Hipertensão Pulmonar/complicações , Pessoa de Meia-Idade , Respiração com Pressão Positiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...